

Name

ANSWERS

Class

www.MathsTeacherHub.com

Inequalities

(9 – 1) Topic booklet

Foundation

These questions have been collated from previous years GCSE Mathematics papers.

You must have: Ruler graduated in centimetres and millimetres, protractor, pair of compasses, pen, HB pencil, eraser.

Total Marks

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- You must show all your working out.
- If the question is a 1F question you are not allowed to use a calculator.
- If the question is a 2F or a 3F question, you may use a calculator to help you answer.

Information

- The marks for each question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Answer ALL questions
Write your answers in the space provided.
You must write down all the stages in your working.

3 Write down a number that is less than -5

-10

November 2024 – Paper 3F

(Total for Question 3 is 1 mark)

10 Here are three symbols.

<	>	=
---	---	---

Write one of these symbols in each box to make four true statements.

$14 \quad \boxed{<} \quad 21$

$4 + 7 \quad \boxed{=} \quad 103 - 92$

$2^2 \quad \boxed{=} \quad 2 \times 2$

$4 \quad \boxed{>} \quad 5$

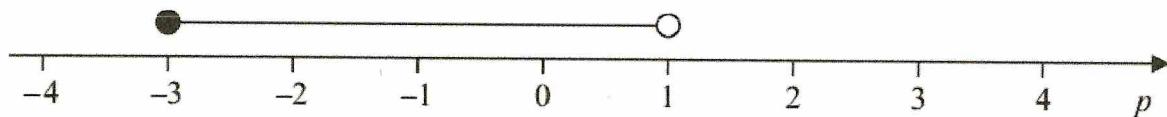
June 2019 – Paper 2F

(Total for Question 10 is 2 marks)

14 The box below contains three mathematical symbols.

=	<	>
---	---	---

From the box, choose a symbol to make each of the following statements correct.

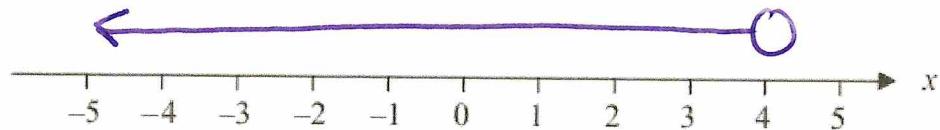

(i) $\frac{5}{8} \text{ } \textcolor{blue}{>} \text{ } \frac{2}{8}$ (1)

(ii) $-2 \times -3 \text{ } \textcolor{blue}{=} \text{ } -3 + 9$
6 6 (1)

June 2022 – Paper 2F

(Total for Question 14 is 2 marks)

19 Here is a number line.


Write down the inequality shown on the number line.

$$-3 \leq p < 1$$

November 2019 – Paper 1F

(Total for Question 19 is 2 marks)

19 (a) On the number line, show the inequality $x < 4$

(2)

$3 < y \leq 7$ where y is an integer.

(b) Write down all the possible values of y .

4, 5, 6, 7

(2)

(c) Solve $3x + 5 \geq x + 17$

$$2x + 5 \geq 17$$

$$2x \geq 12$$

$$x \geq 6$$

$$x \geq 6$$

(3)

19 $-3 < t \leq 2$
 t is an integer.

Write down all the possible values of t .

$-2, -1, 0, 1, 2,$

(2)

June 2017 – Paper 1F

(Total for Question 19 is 2 marks)

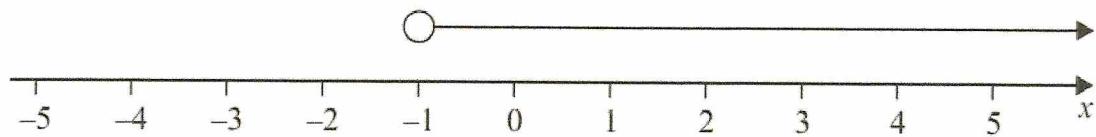
20 (a) Show the inequality $-2 \leq x < 3$ on the number line below.

(2)

(b) Solve the inequality $4y + 7 < 16$

$$4y < 11$$

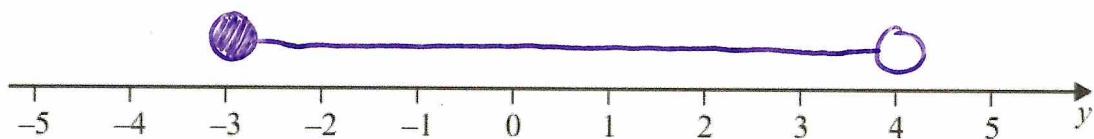
$$y < \frac{11}{4}$$


$$y < 2\frac{3}{4}$$

(2)

Specimen 2 – Paper 3F

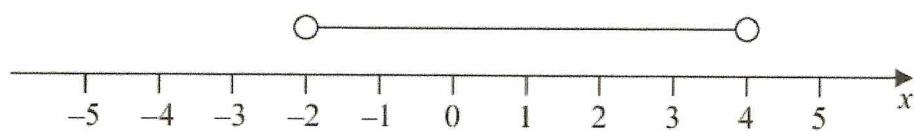
(Total for Question 20 is 4 marks)


21 (a) Write down the inequality shown on this number line.

$$x > -1$$

(1)

(b) On the number line below, show the inequality $-3 \leq y < 4$


(2)

November 2021 – Paper 1F

(Total for Question 21 is 3 marks)

23 Jenna is asked to show the inequality $-3 < x \leq 4$ on a number line.

Here is her answer.

(a) Write down two mistakes Jenna has made.

1 4 should be a solid circle

2 Plotted at -2 instead of -3

(2)

(b) Work out the greatest integer that satisfies the inequality

$$5y - 7 < 16$$

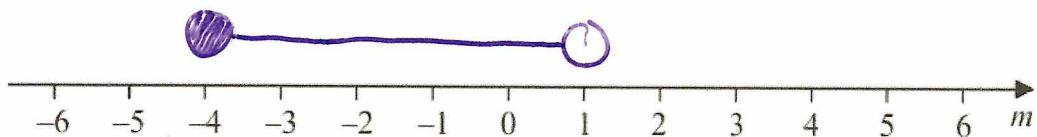
$$5y < 23$$

$$y < \frac{23}{5}$$

$$y < 4\frac{3}{5}$$

(2)

23 $-2 \leq n < 5$


n is an integer.

(a) Write down the greatest possible value of n .

4

(1)

(b) On the number line below, show the inequality $-4 \leq m < 1$

(2)

(c) Solve $\frac{2}{5}g - 4 < 6$

$$\frac{2}{5}g < 10$$

$$2g < 50$$

$$g < 25$$

$$g < 25$$

(3)